Common-Reflection-Surface stack – a generalized stacking velocity analysis tool

Jürgen Mann

Wave Inversion Technology (WIT) Consortium Geophysical Institute, University of Karlsruhe (TH)

September 12, 2005

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Related talks

・ロ・ ・ 白 ・ うへで

Overview

Motivation

Introduction

Traveltime tomography Stacking velocity analysis & Dix inversion Objective

General imaging workflow

Common-Reflection-Surface stack

Basic concepts Wavefield attributes

NIP wave tomography

Principle Data examples

Conclusions

Acknowledgments

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Related talks

▲□ ▶ ▲□ ▶ ろへで

Conventional depth imaging requires a macrovelocity model.

Some common approaches:

- analysis of residual moveouts in depth-migrated common-image gathers (CIGs)
- direct inversion of traveltimes (and slopes) picked in prestack data
- inversion based on stacking velocities

differences in applicability and complexity! Objective:

combine advantages of different approaches

9th SBGf Conference, Salvador 2005 J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Related talks

▲□▶ ▲□▶ ���

Conventional depth imaging requires a macrovelocity model.

Some common approaches:

- analysis of residual moveouts in depth-migrated common-image gathers (CIGs)
 migration velocity analysis (MVA)
- direct inversion of traveltimes (and slopes) picked in prestack data
- inversion based on stacking velocities

differences in applicability and complexity! Objective:

combine advantages of different approaches

9th SBGf Conference, Salvador 2005 J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Conventional depth imaging requires a macrovelocity model.

Some common approaches:

 analysis of residual moveouts in depth-migrated common-image gathers (CIGs)

migration velocity analysis (MVA)

- direct inversion of traveltimes (and slopes) picked in prestack data
- inversion based on stacking velocities

differences in applicability and complexity! Objective:

combine advantages of different approaches

9th SBGf Conference, Salvador 2005 J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Conventional depth imaging requires a macrovelocity model.

Some common approaches:

- analysis of residual moveouts in depth-migrated common-image gathers (CIGs)
 migration velocity analysis (MVA)
- direct inversion of traveltimes (and slopes) picked in prestack data
 - traveltime tomography (stereo tomography)
- inversion based on stacking velocities

differences in applicability and complexity! Objective:

combine advantages of different approaches

9th SBGf Conference, Salvador 2005 J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Conventional depth imaging requires a macrovelocity model.

Some common approaches:

- analysis of residual moveouts in depth-migrated common-image gathers (CIGs)
 migration velocity analysis (MVA)
- direct inversion of traveltimes (and slopes) picked in prestack data
 - traveltime tomography (stereo tomography)
- inversion based on stacking velocities
- differences in applicability and complexity!
 Objective:

combine advantages of different approaches

9th SBGf Conference, Salvador 2005 J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Conventional depth imaging requires a macrovelocity model.

Some common approaches:

- analysis of residual moveouts in depth-migrated common-image gathers (CIGs)
 migration velocity analysis (MVA)
- direct inversion of traveltimes (and slopes) picked in prestack data
 - traveltime tomography (stereo tomography)
- inversion based on stacking velocities
 stacking velocity analysis & Dix inversion
 differences in applicability and complexity!
 bjective:

combine advantages of different approaches

9th SBGf Conference, Salvador 2005 J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Conventional depth imaging requires a macrovelocity model.

Some common approaches:

- analysis of residual moveouts in depth-migrated common-image gathers (CIGs)
 migration velocity analysis (MVA)
- direct inversion of traveltimes (and slopes) picked in prestack data
 - traveltime tomography (stereo tomography)
- inversion based on stacking velocities

stacking velocity analysis & Dix inversion

differences in applicability and complexity!
Objective:

combine advantages of different approaches

9th SBGf Conference, Salvador 2005 J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Conventional depth imaging requires a macrovelocity model.

Some common approaches:

- analysis of residual moveouts in depth-migrated common-image gathers (CIGs)
 migration velocity analysis (MVA)
- direct inversion of traveltimes (and slopes) picked in prestack data
 - traveltime tomography (stereo tomography)
- inversion based on stacking velocities
 - stacking velocity analysis & Dix inversion

differences in applicability and complexity!
Objective:

combine advantages of different approaches

9th SBGf Conference, Salvador 2005 J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Conventional depth imaging requires a macrovelocity model.

Some common approaches:

- analysis of residual moveouts in depth-migrated common-image gathers (CIGs)
 migration velocity analysis (MVA)
- direct inversion of traveltimes (and slopes) picked in prestack data
 - traveltime tomography (stereo tomography)
- inversion based on stacking velocities
 - stacking velocity analysis & Dix inversion
- differences in applicability and complexity!
 Objective:

combine advantages of different approaches

9th SBGf Conference, Salvador 2005 J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Conventional depth imaging requires a macrovelocity model.

Some common approaches:

- analysis of residual moveouts in depth-migrated common-image gathers (CIGs)
 migration velocity analysis (MVA)
- direct inversion of traveltimes (and slopes) picked in prestack data
 - traveltime tomography (stereo tomography)
- inversion based on stacking velocities
 - stacking velocity analysis & Dix inversion
- differences in applicability and complexity!Objective:

combine advantages of different approaches

9th SBGf Conference, Salvador 2005 J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Conventional depth imaging requires a macrovelocity model.

Some common approaches:

- analysis of residual moveouts in depth-migrated common-image gathers (CIGs)
 migration velocity analysis (MVA)
- direct inversion of traveltimes (and slopes) picked in prestack data
 - traveltime tomography (stereo tomography)
- inversion based on stacking velocities
 - stacking velocity analysis & Dix inversion
- differences in applicability and complexity!
 Objective:

combine advantages of different approaches

9th SBGf Conference, Salvador 2005 J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Conventional depth imaging requires a macrovelocity model.

Some common approaches:

- analysis of residual moveouts in depth-migrated common-image gathers (CIGs)
 migration velocity analysis (MVA)
- direct inversion of traveltimes (and slopes) picked in prestack data
 - traveltime tomography (stereo tomography)
- inversion based on stacking velocities
 - stacking velocity analysis & Dix inversion
- differences in applicability and complexity!
 Objective:

combine advantages of different approaches

9th SBGf Conference, Salvador 2005 J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Conventional depth imaging requires a macrovelocity model.

Some common approaches:

- analysis of residual moveouts in depth-migrated common-image gathers (CIGs)
 migration velocity analysis (MVA)
- direct inversion of traveltimes (and slopes) picked in prestack data
 - traveltime tomography (stereo tomography)
- inversion based on stacking velocities
 - stacking velocity analysis & Dix inversion
- differences in applicability and complexity!

Objective:

combine advantages of different approaches

9th SBGf Conference, Salvador 2005 J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Basic properties:

- requires extensive picking in prestack data
- optimum model matches forward-modeled and picked traveltimes
- no stacking and traveltime approximations required
- limitations due to

Extensions:

picking of *locally coherent* reflection events, i. e., traveltime plus local dip 9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Related talks

・ロマ ・回マ うへつ

Basic properties:

- requires extensive picking in prestack data
 often difficult, especially in 3-D
- optimum model matches forward-modeled and picked traveltimes
- no stacking and traveltime approximations required
- limitations due to

Extensions:

picking of *locally coherent* reflection events, i. e., traveltime plus local dip 9th SBGf Conference, Salvador 2005 J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Related talks

・ロマ ・日マ うくで

Basic properties:

- requires extensive picking in prestack data
 often difficult, especially in 3-D
- optimum model matches forward-modeled and picked traveltimes
- no stacking and traveltime approximations required
- limitations due to

Extensions:

 picking of *locally coherent* reflection events, i. e., traveltime plus local dip 9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Basic properties:

- requires extensive picking in prestack data
 often difficult, especially in 3-D
- optimum model matches forward-modeled and picked traveltimes
- no stacking and traveltime approximations required
- limitations due to

Extensions:

picking of *locally coherent* reflection events, i. e., traveltime plus local dip 9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Basic properties:

- requires extensive picking in prestack data
 often difficult, especially in 3-D
- optimum model matches forward-modeled and picked traveltimes
- no stacking and traveltime approximations required
- limitations due to

Extensions:

picking of *locally coherent* reflection events, i. e., traveltime plus local dip 9th SBGf Conference, Salvador 2005 J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Basic properties:

- requires extensive picking in prestack data
 often difficult, especially in 3-D
- optimum model matches forward-modeled and picked traveltimes
- no stacking and traveltime approximations required
- limitations due to
 - chosen model description (smooth, blocky, ...)
 forward-modeling method

Extensions:

 picking of *locally coherent* reflection events, i. e., traveltime plus local dip 9th SBGf Conference, Salvador 2005 J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Basic properties:

- requires extensive picking in prestack data
 often difficult, especially in 3-D
- optimum model matches forward-modeled and picked traveltimes
- no stacking and traveltime approximations required
- limitations due to
 - chosen model description (smooth, blocky, ...
 - forward-modeling method

Extensions:

 picking of *locally coherent* reflection events, i. e., traveltime plus local dip 9th SBGf Conference, Salvador 2005 J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Basic properties:

- requires extensive picking in prestack data
 often difficult, especially in 3-D
- optimum model matches forward-modeled and picked traveltimes
- no stacking and traveltime approximations required
- limitations due to
 - chosen model description (smooth, blocky, ...)
 - forward-modeling method

Extensions:

picking of *locally coherent* reflection events, i.e., traveltime plus local dip 9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Basic properties:

- requires extensive picking in prestack data
 often difficult, especially in 3-D
- optimum model matches forward-modeled and picked traveltimes
- no stacking and traveltime approximations required
- limitations due to
 - chosen model description (smooth, blocky, ...)
 - forward-modeling method

Extensions:

picking of *locally coherent* reflection events, i. e., traveltime plus local dip

stereo tomography

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Related talks

▲□▼ ▲□▼ ろ∢で

Basic properties:

- requires extensive picking in prestack data
 often difficult, especially in 3-D
- optimum model matches forward-modeled and picked traveltimes
- no stacking and traveltime approximations required
- limitations due to
 - chosen model description (smooth, blocky, ...)
 - forward-modeling method

Extensions:

 picking of *locally coherent* reflection events, i. e., traveltime plus local dip

stereo tomography

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Basic properties:

- requires extensive picking in prestack data
 often difficult, especially in 3-D
- optimum model matches forward-modeled and picked traveltimes
- no stacking and traveltime approximations required
- limitations due to
 - chosen model description (smooth, blocky, ...)
 - forward-modeling method

Extensions:

 picking of *locally coherent* reflection events, i. e., traveltime plus local dip

stereo tomography

9th SBGf Conference, Salvador 2005 J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Basic properties:

- requires extensive picking in prestack data
 often difficult, especially in 3-D
- optimum model matches forward-modeled and picked traveltimes
- no stacking and traveltime approximations required
- limitations due to
 - chosen model description (smooth, blocky, ...)
 - forward-modeling method

Extensions:

- picking of *locally coherent* reflection events, i. e., traveltime plus local dip
 - stereo tomography

9th SBGf Conference, Salvador 2005 J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Stacking velocity analysis:

- coherence analysis along second-order CMP traveltime approximation
- relatively coarse picking in poststack data/velocity spectra
- interpolation

Dix inversion:

- ► assumption of 1-D model, v_{RMS} ^{def} v_{stack} or v_{RMS} ^{def} v_{DMO}
- conversion of RMS velocities to interval velocities
- fails for significant dip/curvature

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Stacking velocity analysis:

- coherence analysis along second-order CMP traveltime approximation
- relatively coarse picking in poststack data/velocity spectra
 - simplified picking
- interpolation

Dix inversion:

- ► assumption of 1-D model, v_{RMS} ^{def} v_{stack} or v_{RMS} ^{def} v_{DMO}
- conversion of RMS velocities to interval velocities
- fails for significant dip/curvature

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Stacking velocity analysis:

- coherence analysis along second-order CMP traveltime approximation
- relatively coarse picking in poststack data/velocity spectra
 - simplified picking
- interpolation

Dix inversion:

- ► assumption of 1-D model, V_{RMS} ^{def} V_{stack} or V_{RMS} ^{def} V_{DMO}
- conversion of RMS velocities to interval velocities
- fails for significant dip/curvature

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Stacking velocity analysis:

- coherence analysis along second-order CMP traveltime approximation
- relatively coarse picking in poststack data/velocity spectra
 - simplified picking
- interpolation or smooth stacking velocity model.

Dix inversion:

- ► assumption of 1-D model, v_{RMS} ^{def} v_{stack} or v_{RMS} ^{def} v_{DMO}
- conversion of RMS velocities to interval velocities
- fails for significant dip/curvature

9th SBGf Conference, Salvador 2005 J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Stacking velocity analysis:

- coherence analysis along second-order CMP traveltime approximation
- relatively coarse picking in poststack data/velocity spectra
 - simplified picking
- interpolation smooth stacking velocity model

Dix inversion:

- ► assumption of 1-D model, V_{RMS} ^{def} V_{stack} or V_{RMS} ^{def} V_{DMO}
- conversion of RMS velocities to interval velocities
- fails for significant dip/curvature

9th SBGf Conference, Salvador 2005 J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Stacking velocity analysis:

- coherence analysis along second-order CMP traveltime approximation
- relatively coarse picking in poststack data/velocity spectra
 - simplified picking
- interpolation @ smooth stacking velocity model

Dix inversion:

- ► assumption of 1-D model, $v_{\text{RMS}} \stackrel{\text{def}}{=} v_{\text{stack}}$ or $v_{\text{RMS}} \stackrel{\text{def}}{=} v_{\text{DMO}}$
- conversion of RMS velocities to interval velocities
- fails for significant dip/curvature

9th SBGf Conference, Salvador 2005 J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Stacking velocity analysis:

- coherence analysis along second-order CMP traveltime approximation
- relatively coarse picking in poststack data/velocity spectra
 - simplified picking
- interpolation smooth stacking velocity model

Dix inversion:

- ► assumption of 1-D model, $v_{\text{RMS}} \stackrel{\text{def}}{=} v_{\text{stack}}$ or $v_{\text{RMS}} \stackrel{\text{def}}{=} v_{\text{DMO}}$
- conversion of RMS velocities to interval velocities
- fails for significant dip/curvature

9th SBGf Conference, Salvador 2005 J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Stacking velocity analysis:

- coherence analysis along second-order CMP traveltime approximation
- relatively coarse picking in poststack data/velocity spectra
 - simplified picking
- interpolation Smooth stacking velocity model

Dix inversion:

- ► assumption of 1-D model, $v_{\text{RMS}} \stackrel{\text{def}}{=} v_{\text{stack}}$ or $v_{\text{RMS}} \stackrel{\text{def}}{=} v_{\text{DMO}}$
- conversion of RMS velocities to interval velocities
- fails for significant dip/curvature

9th SBGf Conference, Salvador 2005 J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Stacking velocity analysis:

- coherence analysis along second-order CMP traveltime approximation
- relatively coarse picking in poststack data/velocity spectra
 - simplified picking
- interpolation are smooth stacking velocity model

Dix inversion:

- ► assumption of 1-D model, $v_{\text{RMS}} \stackrel{\text{def}}{=} v_{\text{stack}}$ or $v_{\text{RMS}} \stackrel{\text{def}}{=} v_{\text{DMO}}$
- conversion of RMS velocities to interval velocities
- fails for significant dip/curvature

9th SBGf Conference, Salvador 2005 J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Velocity analysis and Dix inversion

Stacking velocity analysis:

- coherence analysis along second-order CMP traveltime approximation
- relatively coarse picking in poststack data/velocity spectra
 - simplified picking
- interpolation are smooth stacking velocity model

Dix inversion:

- ► assumption of 1-D model, $v_{\text{RMS}} \stackrel{\text{def}}{=} v_{\text{stack}}$ or $v_{\text{RMS}} \stackrel{\text{def}}{=} v_{\text{DMO}}$
- conversion of RMS velocities to interval velocities

fails for significant dip/curvature

9th SBGf Conference, Salvador 2005 J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Velocity analysis and Dix inversion

Stacking velocity analysis:

- coherence analysis along second-order CMP traveltime approximation
- relatively coarse picking in poststack data/velocity spectra
 - simplified picking
- interpolation are smooth stacking velocity model

Dix inversion:

- ► assumption of 1-D model, $v_{\text{RMS}} \stackrel{\text{def}}{=} v_{\text{stack}}$ or $v_{\text{RMS}} \stackrel{\text{def}}{=} v_{\text{DMO}}$
- conversion of RMS velocities to interval velocities
- fails for significant dip/curvature

9th SBGf Conference, Salvador 2005 J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Our goal is to

- avoid picking in prestack data
- retain coherence based analysis
- allow highly automated application
- go beyond the limits of Dix inversion

This requires

- a generalized stacking velocity analysis
- a suitable inversion method

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Related talks

▲□▶ ▲□▼ ろ∢で

Our goal is to

- avoid picking in prestack data
- retain coherence based analysis
- allow highly automated application
- go beyond the limits of Dix inversion

This requires

- a generalized stacking velocity analysis
- a suitable inversion method

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Our goal is to

- avoid picking in prestack data
- retain coherence based analysis
- allow highly automated application
- go beyond the limits of Dix inversion

This requires

- a generalized stacking velocity analysis
- a suitable inversion method

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Related talks

▲□ ▶ ▲□ ▶ ろへで

Our goal is to

- avoid picking in prestack data
- retain coherence based analysis
- allow highly automated application
- go beyond the limits of Dix inversion

This requires

- a generalized stacking velocity analysis
- a suitable inversion method

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Our goal is to

- avoid picking in prestack data
- retain coherence based analysis
- allow highly automated application
- go beyond the limits of Dix inversion

This requires

- a generalized stacking velocity analysis
- a suitable inversion method

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Our goal is to

- avoid picking in prestack data
- retain coherence based analysis
- allow highly automated application
- go beyond the limits of Dix inversion

This requires

- a generalized stacking velocity analysis
- a suitable inversion method

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Related talks

▲□▶ ▲□▶ めへで

Our goal is to

- avoid picking in prestack data
- retain coherence based analysis
- allow highly automated application
- go beyond the limits of Dix inversion

This requires

- a generalized stacking velocity analysis
 Common-Reflection-Surface Stack
- a suitable inversion method

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Related talks

▲□▶ ▲□▶ ろ∢で

Our goal is to

- avoid picking in prestack data
- retain coherence based analysis
- allow highly automated application
- go beyond the limits of Dix inversion

This requires

- a generalized stacking velocity analysis
 Common-Reflection-Surface Stack
- a suitable inversion method

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Related talks

▲□ ▶ ▲□ ▶ ろへで

Our goal is to

- avoid picking in prestack data
- retain coherence based analysis
- allow highly automated application
- go beyond the limits of Dix inversion

This requires

- a generalized stacking velocity analysis
 Common-Reflection-Surface Stack
- a suitable inversion method
 NIP wave tomography

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Our goal is to

- avoid picking in prestack data
- retain coherence based analysis
- allow highly automated application
- go beyond the limits of Dix inversion

This requires

- a generalized stacking velocity analysis
 Common-Reflection-Surface Stack
- a suitable inversion method
 NIP wave tomography

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Our goal is to

- avoid picking in prestack data
- retain coherence based analysis
- allow highly automated application
- go beyond the limits of Dix inversion

This requires

- a generalized stacking velocity analysis
 Common-Reflection-Surface Stack
- a suitable inversion method
 - NIP wave tomography

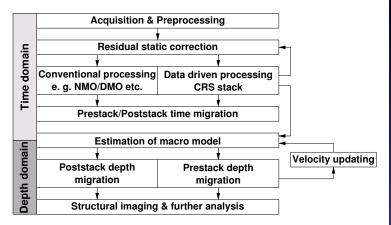
9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow


CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

9th SBGf Conference, Salvador 2005

J. Mann

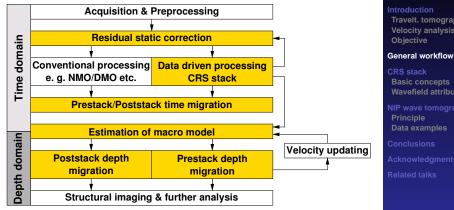
Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples


Conclusions

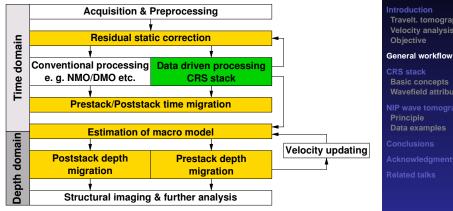
Acknowledgments

Related talks

◆□ ▶ ▲□ ▶ 少々で

vellow = CRS-related applications

9th SBGf Conference. Salvador 2005


J. Mann

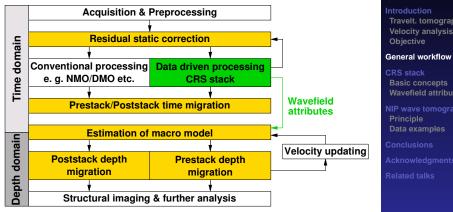
Motivation

Travelt. tomography Velocity analysis

Basic concepts Wavefield attributes

green = topics covered in this talk

9th SBGf Conference. Salvador 2005


J. Mann

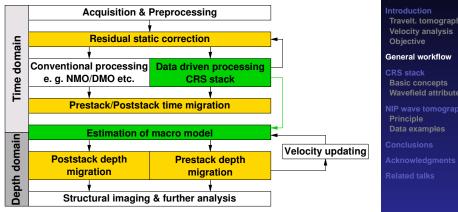
Motivation

Travelt. tomography Velocity analysis

Basic concepts Wavefield attributes

green = topics covered in this talk

9th SBGf Conference. Salvador 2005


J. Mann

Motivation

Travelt. tomography

Wavefield attributes

green = topics covered in this talk

9th SBGf Conference. Salvador 2005

J. Mann

Motivation

Travelt. tomography

Wavefield attributes

 Data-driven time migration, automatic or semi-automatic

separate presentation

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Related talks

▲□▶ ▲□▼ ろ∢で

 Data-driven time migration, automatic or semi-automatic

separate presentation

9th SBGf Conference, Salvador 2005 J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Related talks

▲□▶ ▲□▶ めへで

- Data-driven time migration, automatic or semi-automatic
 - separate presentation

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

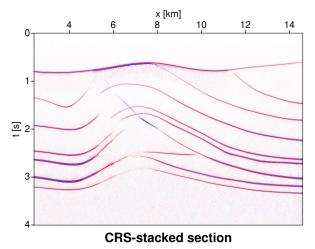
General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments


Related talks

▲□▼ ▲□▼ ろく(?)

 Data-driven time migration, automatic or semi-automatic

separate presentation

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

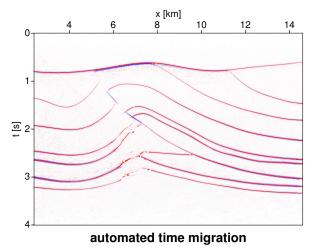
General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments


Related talks

▲□▼ ▲□▼ ろくで

 Data-driven time migration, automatic or semi-automatic

separate presentation

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Related talks

・ロ・ ・ 白 ・ うへで

- Data-driven time migration, automatic or semi-automatic
 resentation
- Improved handling of top-surface topography and complex near-surface conditions
 separate presentation
- Approximation of geometrical spreading factor
- Attribute-based tomographic velocity model determination

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Related talks

▲□▶ ▲□▶ ���

- Data-driven time migration, automatic or semi-automatic
 resentation
- Improved handling of top-surface topography and complex near-surface conditions
- Approximation of geometrical spreading factor
- Attribute-based tomographic velocity model determination

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Related talks

▲□▼ ▲□▼ ろく(~

- Data-driven time migration, automatic or semi-automatic
 resentation
- Improved handling of top-surface topography and complex near-surface conditions
 separate presentation
- Approximation of geometrical spreading factor
 natural gain function
- Attribute-based tomographic velocity model determination

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Related talks

▲□▼ ▲□▼ ろく(~

- Data-driven time migration, automatic or semi-automatic
 resentation
- Improved handling of top-surface topography and complex near-surface conditions
 separate presentation
- Approximation of geometrical spreading factor
 natural gain function
- Attribute-based tomographic velocity model determination
 - NIP wave tomography
 - smooth macrovelocity model for depth imaging

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Related talks

・ロ・ ・ 白 ・ うへで

- Data-driven time migration, automatic or semi-automatic
 resentation
- Improved handling of top-surface topography and complex near-surface conditions
 separate presentation
- Approximation of geometrical spreading factor
 natural gain function
- Attribute-based tomographic velocity model determination
 - NIP wave tomography
 - 🛏 smooth macrovelocity model for depth imaging

9th SBGf Conference, Salvador 2005 J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Related talks

▲□▼ ▲□▼ ろくで

- Data-driven time migration, automatic or semi-automatic
 resentation
- Improved handling of top-surface topography and complex near-surface conditions
 separate presentation
- Approximation of geometrical spreading factor
 natural gain function
- Attribute-based tomographic velocity model determination
 - NIP wave tomography
 - smooth macrovelocity model for depth imaging

9th SBGf Conference, Salvador 2005 J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

- Data-driven time migration, automatic or semi-automatic
 resentation
- Improved handling of top-surface topography and complex near-surface conditions
 separate presentation
- Approximation of geometrical spreading factor
 natural gain function
- Attribute-based tomographic velocity model determination
 - NIP wave tomography
 - smooth macrovelocity model for depth imaging

9th SBGf Conference, Salvador 2005 J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

- Data-driven time migration, automatic or semi-automatic
 resentation
- Improved handling of top-surface topography and complex near-surface conditions
 separate presentation
- Approximation of geometrical spreading factor
 natural gain function
- Attribute-based tomographic velocity model determination
 - NIP wave tomography
 - smooth macrovelocity model for depth imaging

9th SBGf Conference, Salvador 2005 J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

- Approximation of projected Fresnel zone
 optimization of (true-amplitude) limited-aperture Kirchhoff migration
- Improved Amplitude Variation with Offset (AVO) analysis
- estimation of polarization (finite-offset case)

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Related talks

▲□▼ ▲□▼ ろく(~

Approximation of projected Fresnel zone

 optimization of (true-amplitude) limited-aperture Kirchhoff migration

Improved Amplitude Variation with Offset (AVO) analysis

separate presentation

estimation of polarization (finite-offset case)

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Related talks

▲□▼ ▲□▼ ろく(?)

- Approximation of projected Fresnel zone
 optimization of (true-amplitude) limited-aperture Kirchhoff migration
- Improved Amplitude Variation with Offset (AVO) analysis
 - separate presentation
- estimation of polarization (finite-offset case)

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Related talks

▲□▼ ▲□▼ ろく(~

- Approximation of projected Fresnel zone
 optimization of (true-amplitude) limited-aperture Kirchhoff migration
- Improved Amplitude Variation with Offset (AVO) analysis
 - separate presentation
- estimation of polarization (finite-offset case)

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Related talks

▲□▼ ▲□▼ ろく(?)

- Approximation of projected Fresnel zone
 optimization of (true-amplitude) limited-aperture Kirchhoff migration
- Improved Amplitude Variation with Offset (AVO) analysis
 - separate presentation
- estimation of polarization (finite-offset case)
 multi-component CRS stack
 handling of converted waves

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Related talks

◆□ ▶ ▲□ ▶ シタ(や

- Approximation of projected Fresnel zone
 optimization of (true-amplitude) limited-aperture Kirchhoff migration
- Improved Amplitude Variation with Offset (AVO) analysis
 - separate presentation

estimation of polarization (finite-offset case)

multi-component CRS stack
 handling of converted waves
 separate presentation

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Related talks

◆□ ▶ ▲□ ▶ 少々⊙

- Approximation of projected Fresnel zone
 optimization of (true-amplitude) limited-aperture Kirchhoff migration
- Improved Amplitude Variation with Offset (AVO) analysis
 - separate presentation
- estimation of polarization (finite-offset case)
 multi-component CRS stack
 handling of converted waves
 - separate presentation

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Related talks

▲□ ▶ ▲□ ▶ ろくで

- Approximation of projected Fresnel zone
 optimization of (true-amplitude) limited-aperture Kirchhoff migration
- Improved Amplitude Variation with Offset (AVO) analysis
 - separate presentation
- estimation of polarization (finite-offset case)
 - multi-component CRS stack
 - handling of converted waves
 - separate presentation

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Related talks

▲□▼ ▲□▼ ろ∢で

- Approximation of projected Fresnel zone
 optimization of (true-amplitude) limited-aperture Kirchhoff migration
- Improved Amplitude Variation with Offset (AVO) analysis
 - separate presentation
- estimation of polarization (finite-offset case)
 - multi-component CRS stack
 - handling of converted waves
 - separate presentation

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Related talks

▲□ ▶ ▲□ ▶ ろくで

Generalization of conventional approach:

second-order approximation of traveltime

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Related talks

▲□▶ ▲□▶ ろ∢で

Generalization of conventional approach:

second-order approximation of traveltime

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Related talks

▲□▶ ▲□▶ ろ∢で

Generalization of conventional approach:

second-order approximation of traveltime

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Related talks

▲□▶ ▲□▶ ろ∢で

Generalization of conventional approach:

second-order approximation of traveltime

$$t^{2}(\Delta \boldsymbol{\xi}, \mathbf{h}) = (t_{0} + 2\mathbf{p}_{\boldsymbol{\xi}} \cdot \Delta \boldsymbol{\xi})^{2} + 2t_{0} \left(\Delta \boldsymbol{\xi}^{T} \mathbf{M}_{\boldsymbol{\xi}} \ \Delta \boldsymbol{\xi} + \mathbf{h}^{T} \mathbf{M}_{h} \mathbf{h}\right)$$

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Related talks

▲□▶ ▲□▶ シペペ

Generalization of conventional approach:

second-order approximation of traveltime

$$t^{2}(\Delta \boldsymbol{\xi}, \mathbf{h}) = (t_{0} + 2\mathbf{p}_{\boldsymbol{\xi}} \cdot \Delta \boldsymbol{\xi})^{2} + 2t_{0} \left(\Delta \boldsymbol{\xi}^{T} \mathbf{M}_{\boldsymbol{\xi}} \Delta \boldsymbol{\xi} + \mathbf{h}^{T} \mathbf{M}_{h} \mathbf{h}\right)$$

 $\mathbf{p}_{\boldsymbol{\xi}} = \frac{1}{2} \partial t / \partial \boldsymbol{\xi}$ $\mathbf{M}_{h} = \frac{1}{2} \partial^{2} t / \partial \mathbf{h}^{2}$ $\mathbf{M}_{\boldsymbol{\xi}} = \frac{1}{2} \partial^{2} t / \partial \boldsymbol{\xi}^{2}$

- t₀ zero-offset traveltime
- h source/receiver offset
- $\Delta \xi$ midpoint displacement

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Generalization of conventional approach:

- second-order approximation of traveltime
- fully automated coherence-based application
- high-density analysis
- spatial stacking operator

9th SBGf Conference, Salvador 2005 J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Related talks

▲□▶ ▲□▶ ���

Generalization of conventional approach:

- second-order approximation of traveltime
- fully automated coherence-based application
- high-density analysis
 no pulse stretch, high resolution
- spatial stacking operator

9th SBGf Conference, Salvador 2005 J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Related talks

▲□▶ ▲□▶ めへで

Generalization of conventional approach:

- second-order approximation of traveltime
- fully automated coherence-based application
- high-density analysis
 no pulse stretch, high resolution
- spatial stacking operator

9th SBGf Conference, Salvador 2005 J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Related talks

▲□▶ ▲□▶ ���

Generalization of conventional approach:

- second-order approximation of traveltime
- fully automated coherence-based application
- high-density analysis
 no pulse stretch, high resolution
- spatial stacking operator

9th SBGf Conference, Salvador 2005 J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Related talks

▲□▼ ▲□▼ ろく(~

Generalization of conventional approach:

- second-order approximation of traveltime
- fully automated coherence-based application
- high-density analysis
 - no pulse stretch, high resolution
- spatial stacking operator

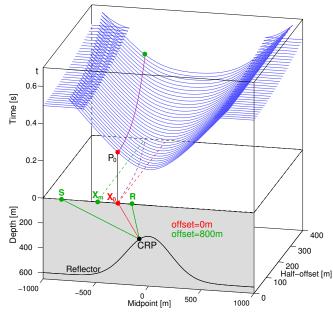
9th SBGf Conference, Salvador 2005 J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes


NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

2-D stacking operators: CRP trajectory

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

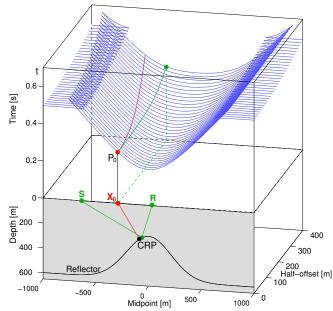
Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions


Acknowledgments

Related talks

< □ > < □ > < □ > < ○<</p>

2-D stacking operators: NMO operator

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

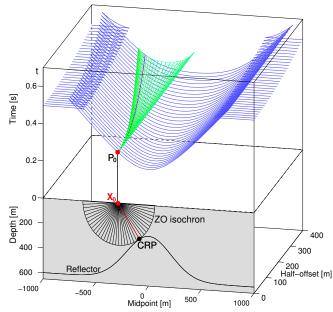
Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions


Acknowledgments

Related talks

▲□▶ ▲□▶ ろぐら

2-D stacking operators: NMO plus DMO

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

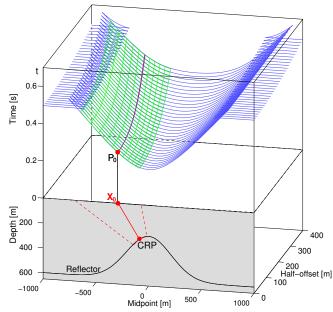
Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions


Acknowledgments

Related talks

・ロ・ ・ 白 ・ うへで

2-D stacking operators: CRS operator

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Related talks

▲□▼ ▲□▼ ろく(~

Generalization of conventional approach:

- second-order approximation of traveltime
- fully automated coherence-based application
- high-density analysis
 no pulse stretch, high resolution
- spatial stacking operator

much more prestack traces used
 enhanced signal/noise ratio

9th SBGf Conference, Salvador 2005 J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Related talks

・ロマ ・回マ うへつ

Generalization of conventional approach:

- second-order approximation of traveltime
- fully automated coherence-based application
- high-density analysis
 no pulse stretch, high resolution
- spatial stacking operator
 much more prestack traces used
 enhanced signal/noise ratio

9th SBGf Conference, Salvador 2005 J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Related talks

・ロマ ・回マ うへつ

Generalization of conventional approach:

- second-order approximation of traveltime
- fully automated coherence-based application
- high-density analysis
 - no pulse stretch, high resolution
- spatial stacking operator
 - much more prestack traces used
 - enhanced signal/noise ratio

9th SBGf Conference, Salvador 2005

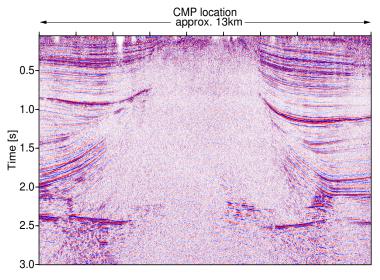
J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes


NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Stack results: NMO/DMO/stack

(from Müller, "The Common Reflection Surface Stack Method", 1999)

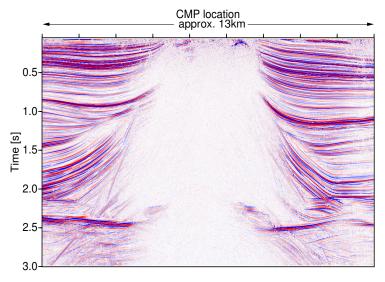
9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow


CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Stack results: CRS stack

(from Müller, "The Common Reflection Surface Stack Method", 1999)

9th SBGf Conference, Salvador 2005

J. Mann

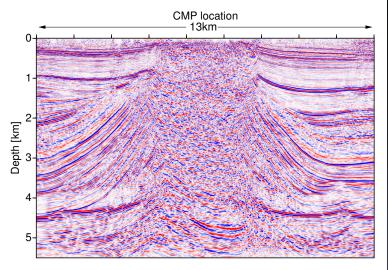
Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples


Conclusions Acknowledgmen

Related talks

・ロト < 日 > うへ(?)

Depth migration of NMO/DMO/stack

(from Müller, "The Common Reflection Surface Stack Method", 1999)

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

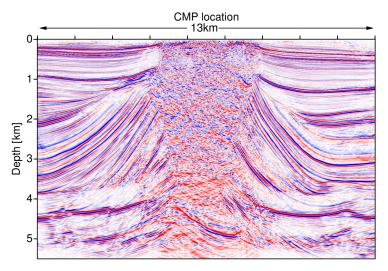
Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions


Acknowledgments

Related talks

・ロト ・白 ト うへで

Depth migration of CRS stack

(from Müller, "The Common Reflection Surface Stack Method", 1999)

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgment

Related talks

▲□▶ ▲母▼ ろく⊙

Generalization of conventional approach:

- second-order approximation of traveltime
- fully automated coherence-based application
- high-density analysis
 - no pulse stretch, high resolution
- spatial stacking operator
 much more prestack traces used
 enhanced signal/noise ratio
- additional stacking parameters related to first and second traveltime derivatives
 geometrical interpretation

9th SBGf Conference, Salvador 2005 J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Generalization of conventional approach:

- second-order approximation of traveltime
- fully automated coherence-based application
- high-density analysis
 - no pulse stretch, high resolution
- spatial stacking operator
 much more prestack traces used
 - enhanced signal/noise ratio
- additional stacking parameters related to first and second traveltime derivatives

geometrical interpretation

9th SBGf Conference, Salvador 2005 J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Generalization of conventional approach:

- second-order approximation of traveltime
- fully automated coherence-based application
- high-density analysis
 - no pulse stretch, high resolution
- spatial stacking operator
 much more prestack traces used
 - → enhanced signal/noise ratio
- additional stacking parameters related to first and second traveltime derivatives
 geometrical interpretation

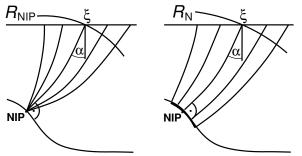
9th SBGf Conference, Salvador 2005 J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes


NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Geometrical interpretation of stacking parameters:

Emergence direction and curvatures of hypothetical wavefronts:

- exploding point source
 - ** normal-incidence-point (NIP) wave
- exploding reflector

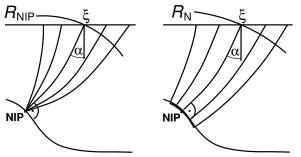
9th SBGf Conference, Salvador 2005 J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes


NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Geometrical interpretation of stacking parameters:

Emergence direction and curvatures of hypothetical wavefronts:

- exploding point source
 mormal-incidence-point (NIP) wave
- exploding reflector

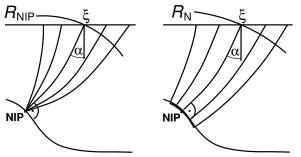
9th SBGf Conference, Salvador 2005 J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes


NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Geometrical interpretation of stacking parameters:

Emergence direction and curvatures of hypothetical wavefronts:

- exploding point source
 - ormal-incidence-point (NIP) wave
- exploding reflector en normal wava

9th SBGf Conference, Salvador 2005

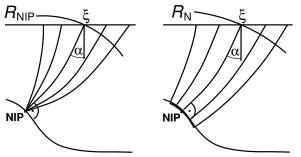
J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes


NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Geometrical interpretation of stacking parameters:

Emergence direction and curvatures of hypothetical wavefronts:

exploding point source
 normal-incidence-point (NIP) wave

exploding reflector an normal wave

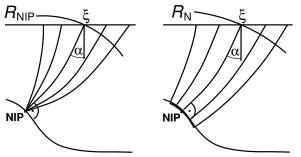
9th SBGf Conference, Salvador 2005 J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes


NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Geometrical interpretation of stacking parameters:

Emergence direction and curvatures of hypothetical wavefronts:

- exploding point source
 normal-incidence-point (NIP) wave
- exploding reflector and make

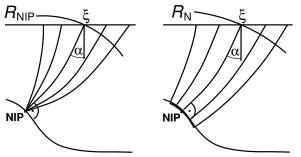
9th SBGf Conference, Salvador 2005 J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes


NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Geometrical interpretation of stacking parameters:

Emergence direction and curvatures of hypothetical wavefronts:

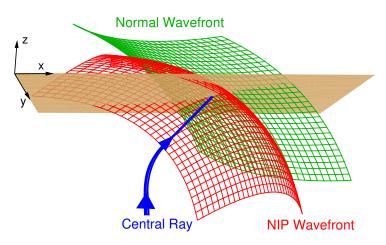
- exploding point source
 mormal-incidence-point (NIP) wave
- exploding reflector <>> normal wave

9th SBGf Conference, Salvador 2005 J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow


CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

slowness vector and curvature matrices!

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Related talks

4 日 × 4 日 × 9 へ ()

Reformulation of traveltime formula

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

ntroduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Related talks

▲□▶ ▲□▶ 少々⊙

Reformulation of traveltime formula

In terms of traveltime derivatives:

$$t^{2}(\Delta \boldsymbol{\xi}, \mathbf{h}) = (t_{0} + 2\mathbf{p}_{\boldsymbol{\xi}} \cdot \Delta \boldsymbol{\xi})^{2} + 2t_{0} \left(\Delta \boldsymbol{\xi}^{T} \mathbf{M}_{\boldsymbol{\xi}} \ \Delta \boldsymbol{\xi} + \mathbf{h}^{T} \mathbf{M}_{\boldsymbol{h}} \mathbf{h}\right)$$

 $\mathbf{p}_{\boldsymbol{\xi}} = \frac{1}{2} \partial t / \partial \boldsymbol{\xi}$

 $\mathbf{M}_{h} = \frac{1}{2}\partial^{2}t/\partial\mathbf{h}^{2}$

 $\mathbf{M}_{\boldsymbol{\xi}} = rac{1}{2}\partial^{2}t/\partial \boldsymbol{\xi}^{2}$

- *t*₀ zero-offset traveltime **h** source/receiver offset
- $\Delta \boldsymbol{\xi}$ midpoint displacement

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Reformulation of traveltime formula

In terms of kinematic wavefield attributes:

$$t^{2}(\Delta \boldsymbol{\xi}, \mathbf{h}) = (t_{0} + 2\mathbf{p}_{\boldsymbol{\xi}} \cdot \Delta \boldsymbol{\xi})^{2} + 2t_{0} \left(\Delta \boldsymbol{\xi}^{T} \mathbf{M}_{\boldsymbol{\xi}} \Delta \boldsymbol{\xi} + \mathbf{h}^{T} \mathbf{M}_{\boldsymbol{h}} \mathbf{h}\right)$$

$$\mathbf{p}_{\xi} = \frac{1}{v_0} (\sin \alpha \cos \psi, \sin \alpha \sin \psi)^7$$

$$\mathbf{M}_h = \frac{1}{v_0} \mathbf{D} \mathbf{K}_{\text{NIP}} \mathbf{D}^T$$

 $\mathbf{M}_{\boldsymbol{\xi}} = rac{1}{v_0} \mathbf{D} \mathbf{K}_{N} \mathbf{D}^{\mathcal{T}}$

 $\begin{array}{ll} t_0 & \text{zero-offset traveltime} \\ \textbf{h} & \text{source/receiver offset} \\ \Delta \pmb{\xi} & \text{midpoint displacement} \end{array}$

9th SBGf Conference, Salvador 2005 J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Reformulation of traveltime formula

In terms of kinematic wavefield attributes:

$$t^{2}(\Delta \boldsymbol{\xi}, \mathbf{h}) = (t_{0} + 2\mathbf{p}_{\boldsymbol{\xi}} \cdot \Delta \boldsymbol{\xi})^{2} + 2t_{0} \left(\Delta \boldsymbol{\xi}^{T} \mathbf{M}_{\boldsymbol{\xi}} \ \Delta \boldsymbol{\xi} + \mathbf{h}^{T} \mathbf{M}_{\boldsymbol{h}} \mathbf{h}\right)$$

$$\mathbf{p}_{\xi} = \frac{1}{v_0} (\sin \alpha \cos \psi, \sin \alpha \sin \psi)^7$$

$$\mathbf{M}_h = \frac{1}{v_0} \mathbf{D} \mathbf{K}_{\text{NIP}} \mathbf{D}^T$$

 $\mathbf{M}_{\xi} = \frac{1}{v_0} \mathbf{D} \mathbf{K}_N \mathbf{D}^T$

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

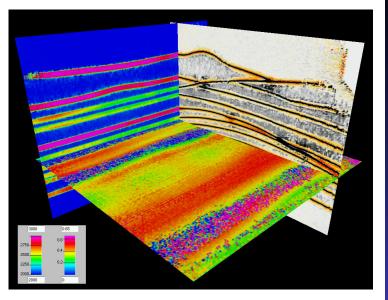
General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments


Related talks

< □ > < □ > < □ > < ○ < ○ >

- α emergence angle of normal ray
- ψ azimuth of normal ray
- D transformation ray-centered/global coordinates
- K_{NIP} curvature matrix of NIP wavefront
 - K_N curvature matrix of normal wavefront
 - v₀ near-surface velocity

Raw wavefield attributes

9th SBGf Conference, Salvador 2005 J. Mann

Motivation

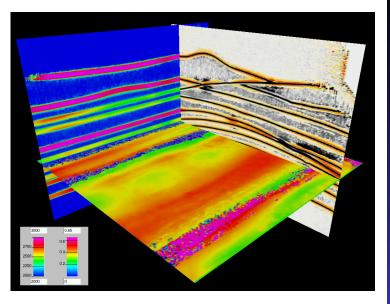
ntroduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions


Acknowledgments

Related talks

< □ > < □ > < □ > < ○<</p>

Smoothed wavefield attributes

9th SBGf Conference, Salvador 2005 J. Mann

Motivation

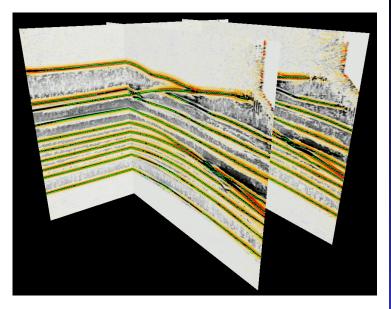
ntroduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions


Acknowledgment

Related talks

▲□▶ ▲母 ▶ 釣�?

Automatically picked events

9th SBGf Conference, Salvador 2005 J. Mann

Motivation

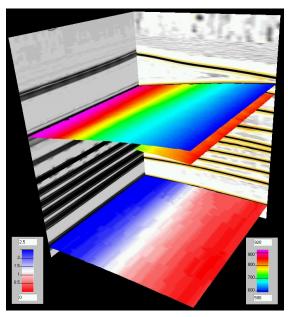
ntroduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions


Acknowledgments

Related talks

< □ > < □ > < □ > < ○<</p>

Extracted wavefield attributes

Smoothing & extraction of wavefield attributes @ separate presentation

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

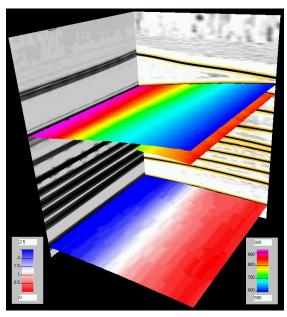
Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions


Acknowledgments

Related talks

▲□▶ ▲母 ▶ 釣�?

Extracted wavefield attributes

Smoothing & extraction of wavefield attributes

separate presentation 9th SBGf Conference, Salvador 2005

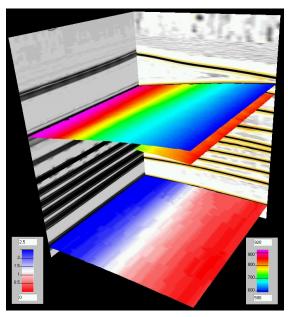
J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes


NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Extracted wavefield attributes

Smoothing & extraction of wavefield attributes & separate presentation 9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Related talks

▲□▶ ▲母▼ ろく⊙

Available so far:

- ► ZO traveltime/location picks (t_0, ξ)
- slowness vectors p_ξ (t₀, ξ) and second derivative matrices M_h(t₀, ξ)
- slowness vectors p_ξ (t₀, ξ) and second derivative matrices M_ξ (t₀, ξ)

NIP waves provide a simple and evident imaging condition for inversion!

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Related talks

▲□▼ ▲□▼ ろくで

Available so far:

- ► ZO traveltime/location picks (t_0, ξ)
- slowness vectors p_ξ(t₀,ξ) and second derivative matrices M_h(t₀,ξ)
- slowness vectors p_ξ (t₀, ξ) and second derivative matrices M_ξ (t₀, ξ)

NIP waves provide a simple and evident imaging condition for inversion!

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Related talks

▲□▼ ▲□▼ ろくで

Available so far:

- ► ZO traveltime/location picks (t_0, ξ)
- slowness vectors p_ξ (t₀, ξ) and second derivative matrices M_h(t₀, ξ)
 ⇒ characterizing NIP wavefronts
- slowness vectors p_ξ (t₀, ξ) and second derivative matrices M_ξ (t₀, ξ)

NIP waves provide a simple and evident imaging condition for inversion!

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Available so far:

- ► ZO traveltime/location picks (t_0, ξ)
- slowness vectors **p**_ξ(t₀, ξ) and second derivative matrices **M**_h(t₀, ξ)

characterizing NIP wavefronts

slowness vectors p_ξ (t₀, ξ) and second derivative matrices M_ξ (t₀, ξ)

NIP waves provide a simple and evident imaging condition for inversion! 9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Available so far:

- ► ZO traveltime/location picks (t_0, ξ)
- slowness vectors p_ξ (t₀, ξ) and second derivative matrices M_h(t₀, ξ)
 ⇒ characterizing NIP wavefronts
- slowness vectors p_ξ (t₀,ξ) and second derivative matrices M_ξ (t₀,ξ)
 ⇒ characterizing normal wavefronts

NIP waves provide a simple and evident imaging condition for inversion! 9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Available so far:

- ► ZO traveltime/location picks (t_0, ξ)
- slowness vectors p_ξ (t₀, ξ) and second derivative matrices M_h(t₀, ξ)
 ⇒ characterizing NIP wavefronts
- slowness vectors p_ξ (t₀, ξ) and second derivative matrices M_ξ (t₀, ξ)

characterizing normal wavefronts

NIP waves provide a simple and evident imaging condition for inversion! 9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Available so far:

- ► ZO traveltime/location picks (t_0, ξ)
- slowness vectors p_ξ (t₀, ξ) and second derivative matrices M_h(t₀, ξ)
 ⇒ characterizing NIP wavefronts
- slowness vectors p_ξ (t₀, ξ) and second derivative matrices M_ξ (t₀, ξ)
 - characterizing normal wavefronts

NIP waves provide a simple and evident imaging condition for inversion!

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Available so far:

- ► ZO traveltime/location picks (t_0, ξ)
- slowness vectors p_ξ (t₀, ξ) and second derivative matrices M_h(t₀, ξ)
 ⇒ characterizing NIP wavefronts
- slowness vectors p_ξ (t₀, ξ) and second derivative matrices M_ξ (t₀, ξ)
 - characterizing normal wavefronts

NIP waves provide a simple and evident imaging condition for inversion!

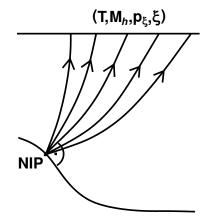
9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow


CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Attributes \mathbf{M}_h and \mathbf{p}_{ξ} at $(t_0, \boldsymbol{\xi})$ locally describe an emerging NIP wavefront.

9th SBGf Conference, Salvador 2005

J. Mann

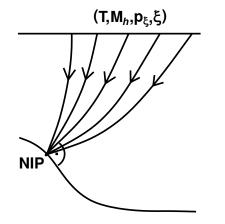
Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples


Conclusions

Acknowledgments

Related talks

▲□▶ ▲□▶ 少々で

In velocity models consistent with the data, downward-propagated NIP waves focus at T = 0. rainaging condition

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Strategy:

- define (simple) initial model of velocity distribution and reflector segments
- forward-modeling of traveltimes and wavefield attributes by dynamic ray tracing
- solve nonlinear least-squares problem by local linearization with Fréchet derivatives
- iterative minimization of misfit between forward-modeled and picked traveltimes and attributes

tomographic inversion approach, yields smooth velocity model consistent with picked data

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Related talks

▲□▶ ▲母 ▶ 少へで

Strategy:

- define (simple) initial model of velocity distribution and reflector segments
- forward-modeling of traveltimes and wavefield attributes by dynamic ray tracing
- solve nonlinear least-squares problem by local linearization with Fréchet derivatives
- iterative minimization of misfit between forward-modeled and picked traveltimes and attributes

tomographic inversion approach, yields smooth velocity model consistent with picked data

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Related talks

< □ > < □ > < □ > < □ >

Strategy:

- define (simple) initial model of velocity distribution and reflector segments
- forward-modeling of traveltimes and wavefield attributes by dynamic ray tracing
- solve nonlinear least-squares problem by local linearization with Fréchet derivatives
- iterative minimization of misfit between forward-modeled and picked traveltimes and attributes

tomographic inversion approach, yields smooth velocity model consistent with picked data

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Strategy:

- define (simple) initial model of velocity distribution and reflector segments
- forward-modeling of traveltimes and wavefield attributes by dynamic ray tracing
- solve nonlinear least-squares problem by local linearization with Fréchet derivatives
- iterative minimization of misfit between forward-modeled and picked traveltimes and attributes
 - tomographic inversion approach, yields smooth velocity model consistent with picked data

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Strategy:

- define (simple) initial model of velocity distribution and reflector segments
- forward-modeling of traveltimes and wavefield attributes by dynamic ray tracing
- solve nonlinear least-squares problem by local linearization with Fréchet derivatives
- iterative minimization of misfit between forward-modeled and picked traveltimes and attributes
 - ➡ tomographic inversion approach, yields smooth velocity model consistent with picked data

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Strategy:

- define (simple) initial model of velocity distribution and reflector segments
- forward-modeling of traveltimes and wavefield attributes by dynamic ray tracing
- solve nonlinear least-squares problem by local linearization with Fréchet derivatives
- iterative minimization of misfit between forward-modeled and picked traveltimes and attributes
 - ➡ tomographic inversion approach, yields smooth velocity model consistent with picked data

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Strategy:

- define (simple) initial model of velocity distribution and reflector segments
- forward-modeling of traveltimes and wavefield attributes by dynamic ray tracing
- solve nonlinear least-squares problem by local linearization with Fréchet derivatives
- iterative minimization of misfit between forward-modeled and picked traveltimes and attributes
 - ➡ tomographic inversion approach, yields smooth velocity model consistent with picked data

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Data and model components

 (p_{ξ_x}, p_{ξ_y}) v(x,y,z) (e_x, e_y) (x, y, z)

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Related talks

- ロ ト ・ 白 ト う へ ()・

Data and model components

$$(p_{\xi_x}, p_{\xi_y}) = M_{\phi}$$
$$(\xi_x, \xi_y)$$
$$(e_x, e_y) = v(x, y, z)$$
$$NIP$$
$$(x, y, z)$$

Data:

$$(au, M_{\phi}, p_{\xi_x}, p_{\xi_y}, \xi_x, \xi_y)_i$$

 $au = t_0/2$

 \mathbf{M}_h only required for one azimuth ϕ : M_ϕ

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Data and model components

$$(p_{\xi_x}, p_{\xi_y}) = M_{\phi}$$
$$(\xi_x, \xi_y)$$
$$(e_x, e_y) = v(x, y, z)$$
$$NIP$$
$$(x, y, z)$$

Data:

Model:

$$(au, M_{\phi}, p_{\xi_x}, p_{\xi_y}, \xi_x, \xi_y)_i$$

 $au = t_0/2$

 $(x, y, z, e_x, e_y)_i, v_{jkl}$ v_{ikl} : B-spline coefficients

 \mathbf{M}_h only required for one azimuth ϕ : M_ϕ

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Further aspects:

 Regularization: search for the smoothest model consistent with picked data

Optional constraints:

- velocity gradient preferably along normal rays
- consideration of well log velocities
- consideration of known velocities (e.g. marine case

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Related talks

◆□ ▶ ▲□ ▶ 少々⊙

Further aspects:

 Regularization: search for the smoothest model consistent with picked data

Optional constraints:

- velocity gradient preferably along normal rays
- consideration of well log velocities
- consideration of known velocities (e.g. marine case

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Related talks

◆□ ▶ ▲□ ▶ シタ(や

Further aspects:

 Regularization: search for the smoothest model consistent with picked data

Optional constraints:

- velocity gradient preferably along normal rays
- consideration of well log velocities
- consideration of known velocities (e.g. marine case

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Further aspects:

 Regularization: search for the smoothest model consistent with picked data

Optional constraints:

- velocity gradient preferably along normal rays
- consideration of well log velocities
- consideration of known velocities (e.g. marine case

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Further aspects:

 Regularization: search for the smoothest model consistent with picked data

Optional constraints:

- velocity gradient preferably along normal rays
- consideration of well log velocities
- consideration of known velocities (e.g. marine case

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Further aspects:

 Regularization: search for the smoothest model consistent with picked data

Optional constraints:

- velocity gradient preferably along normal rays
- consideration of well log velocities
- consideration of known velocities (e.g. marine case)

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Further aspects:

 Regularization: search for the smoothest model consistent with picked data

Optional constraints:

- velocity gradient preferably along normal rays
- consideration of well log velocities
- consideration of known velocities (e.g. marine case)

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Advantages:

- no picking in prestack data required
- no assumptions about reflector continuity
- only few picks required due to information inherent in wavefield attributes

Limitations:

- smooth velocity model description must be applicable
- limited lateral variation within stacking aperture due to second-order approximation

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Related talks

・ロ・ ・ 白 ・ うへで

Advantages:

no picking in prestack data required

- no assumptions about reflector continuity
- only few picks required due to information inherent in wavefield attributes

Limitations:

- smooth velocity model description must be applicable
- limited lateral variation within stacking aperture due to second-order approximation

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Advantages:

- no picking in prestack data required
- no assumptions about reflector continuity
- only few picks required due to information inherent in wavefield attributes

Limitations:

- smooth velocity model description must be applicable
- limited lateral variation within stacking aperture due to second-order approximation

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Related talks

・ロマ ・回マ うへつ

Advantages:

- no picking in prestack data required
- no assumptions about reflector continuity
- only few picks required due to information inherent in wavefield attributes

Limitations:

- smooth velocity model description must be applicable
- limited lateral variation within stacking aperture due to second-order approximation

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Related talks

▲□▶ ▲□▶ 少々で

Advantages:

- no picking in prestack data required
- no assumptions about reflector continuity
- only few picks required due to information inherent in wavefield attributes

Limitations:

- smooth velocity model description must be applicable
- limited lateral variation within stacking aperture due to second-order approximation

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Advantages:

- no picking in prestack data required
- no assumptions about reflector continuity
- only few picks required due to information inherent in wavefield attributes

Limitations:

- smooth velocity model description must be applicable
- limited lateral variation within stacking aperture due to second-order approximation

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Advantages:

- no picking in prestack data required
- no assumptions about reflector continuity
- only few picks required due to information inherent in wavefield attributes

Limitations:

- smooth velocity model description must be applicable
- limited lateral variation within stacking aperture due to second-order approximation

9th SBGf Conference, Salvador 2005

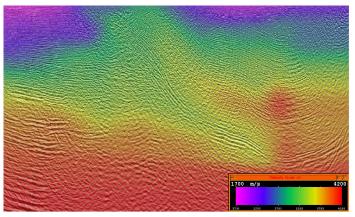
J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes


NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

2-D real data example

Macrovelocity model from CRS tomography with corresponding PostSDM of CRS stack

Data and image courtesy Trappe Erdöl Erdgas Consulting, TEEC

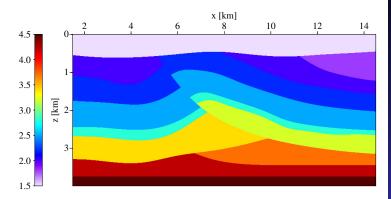
9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow


CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

True P-wave velocity model [km/s]

9th SBGf Conference, Salvador 2005

J. Mann

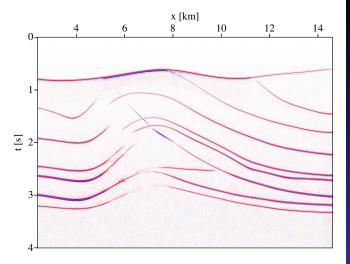
Motivation

ntroduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples


Conclusions

Acknowledgments

Related talks

◆□ ▶ ▲□ ▶ シタ(や

CRS stacked section

9th SBGf Conference, Salvador 2005

J. Mann

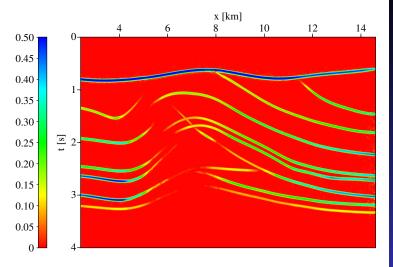
Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples


Conclusions

Acknowledgments

Related talks

< □ > < □ > < □ > < □ >

Coherence section (semblance)

9th SBGf Conference, Salvador 2005

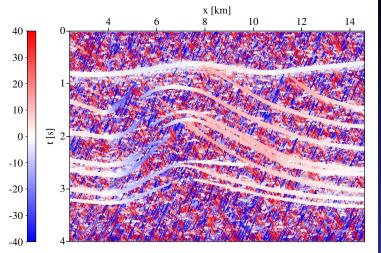
J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes


NIP wave tomography Principle Data examples

Conclusions Acknowledgments

Related talks

◆□ ▶ ▲□ ▶ ろへで

Emergence angle [°] section

9th SBGf Conference, Salvador 2005

J. Mann

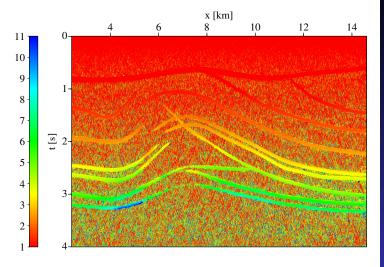
Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples


Conclusions

Acknowledgments

Related talks

▲□▼ ▲□▼ ろ∢で

R_{NIP} [km] section

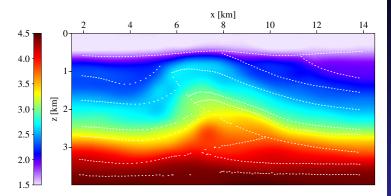
9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow


CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions Acknowledgments

▲□▶ ▲□▶ ろへ⊙

Final model [km/s] with dip bars

9th SBGf Conference, Salvador 2005

J. Mann

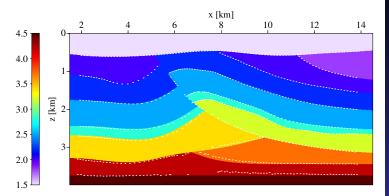
Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples


Conclusions

Acknowledgments

Related talks

< □ > < □ > < □ > < ○</p>

True model [km/s] with dip bars

9th SBGf Conference, Salvador 2005

J. Mann

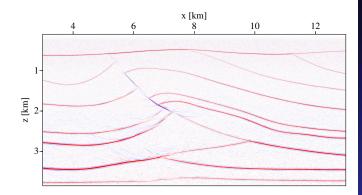
Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples


Conclusions

Acknowledgments

Related talks

< □ > < □ > < □ > < □ >

Prestack depth migration

9th SBGf Conference, Salvador 2005

J. Mann

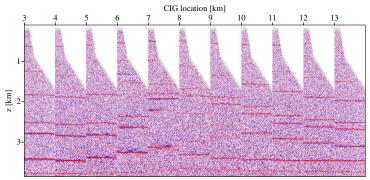
Motivation

ntroduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples


Conclusions

Related talks

◆□ ▼ ▲ □ ▼ ◆ □ ▼

Proof of consistency:

Prestack depth migration (selected common-image gathers)

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions Acknowledgments

- generalization of stacking velocity analysis
- automated high-density analysis
- simple, (semi-)automatic extraction of traveltimes and (smoothed) wavefield attributes in poststack domain
- various applications of wavefield attributes
- tailored inversion method: NIP wave tomography
- entire workflow based on consistent assumptions

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments Related talks

▲□▼ ▲□▼ ろくで

generalization of stacking velocity analysis

- automated high-density analysis
- simple, (semi-)automatic extraction of traveltimes and (smoothed) wavefield attributes in poststack domain
- various applications of wavefield attributes
- tailored inversion method: NIP wave tomography
- entire workflow based on consistent assumptions

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

- generalization of stacking velocity analysis
- automated high-density analysis
- simple, (semi-)automatic extraction of traveltimes and (smoothed) wavefield attributes in poststack domain
- various applications of wavefield attributes
- tailored inversion method: NIP wave tomography
- entire workflow based on consistent assumptions

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

- generalization of stacking velocity analysis
- automated high-density analysis
- simple, (semi-)automatic extraction of traveltimes and (smoothed) wavefield attributes in poststack domain
- various applications of wavefield attributes
- tailored inversion method: NIP wave tomography
- entire workflow based on consistent assumptions

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

- generalization of stacking velocity analysis
- automated high-density analysis
- simple, (semi-)automatic extraction of traveltimes and (smoothed) wavefield attributes in poststack domain
- various applications of wavefield attributes
- tailored inversion method: NIP wave tomography
- entire workflow based on consistent assumptions

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

- generalization of stacking velocity analysis
- automated high-density analysis
- simple, (semi-)automatic extraction of traveltimes and (smoothed) wavefield attributes in poststack domain
- various applications of wavefield attributes
- tailored inversion method: NIP wave tomography
- entire workflow based on consistent assumptions

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

- generalization of stacking velocity analysis
- automated high-density analysis
- simple, (semi-)automatic extraction of traveltimes and (smoothed) wavefield attributes in poststack domain
- various applications of wavefield attributes
- tailored inversion method: NIP wave tomography
- entire workflow based on consistent assumptions

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Acknowledgments

This work was kindly supported by the sponsors of the Wave Inversion Technology (WIT) Consortium, Karlsruhe, Germany. I also thank the Sociedade Brasileira de Geofísica (SBGf) for its support.

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Related talks

▲□▶ ▲□▶ 少々で

Related presentations

Session "Seismic Imaging", Wednesday morning:

- 09:20 Smoothing and automated picking of kinematic wavefield attributes
- 09:45 CRS-stack-based seismic imaging for land data and complex near-surface conditions
- 11:00 True-amplitude CRS-based Kirchhoff time migration for AVO analysis
- 11:25 Common-Reflection-Surface stack for OBS and VSP geometries and multi-component seismic reflection data

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

9th SBGf Conference, Salvador 2005

J. Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

General workflow

CRS stack Basic concepts Wavefield attributes

NIP wave tomography Principle Data examples

Conclusions

Acknowledgments

Related talks

- ロ ト ・ 白 ト う へ ()・