CRS-stack-based seismic imaging for land data – a case study from Saudi Arabia

Zeno Heilmann, Jürgen Mann, and Ingo Koglin

Wave Inversion Technology (WIT) Consortium Geophysical Institute, University of Karlsruhe (TH)

5th October 2006

76th SEG Annual Meeting, New Orleans, 2006 Heilmann et al.

ntroduction CRS stack

Land-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions

Outline

Introduction

Common-Reflection-Surface stack

Land-data processing

Topography handling Residual static correction Redatuming

Real data example

Data set CRS stack Tomographic inversion Depth migration

Conclusions

76th SEG Annual Meeting, New Orleans, 2006

Heilmann et al.

ntroduction CRS stack

Land-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions

Acknowledgments

▲□▶ ▲□▶ ろくゆ

- Alternative to standard NMO/DMO/stack approach
- Principle:
 - Second-order approximation of reflection events
 - Coherence-based, high-density, multidimensional stacking parameter analysis

76th SEG Annual Meeting, New Orleans, 2006

Heilmann et al.

Introduction CRS stack

Land-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions

- Alternative to standard NMO/DMO/stack approach
- Principle:
 - Second-order approximation of reflection events
 - Coherence-based, high-density, multidimensional stacking parameter analysis

76th SEG Annual Meeting, New Orleans, 2006

Heilmann et al.

Introduction CRS stack

Land-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions

- Alternative to standard NMO/DMO/stack approach
- Principle:
 - Second-order approximation of reflection events
 - Coherence-based, high-density, multidimensional stacking parameter analysis

76th SEG Annual Meeting, New Orleans, 2006

Heilmann et al.

Introduction CRS stack

Land-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions

- Alternative to standard NMO/DMO/stack approach
- Principle:
 - Second-order approximation of reflection events
 - Coherence-based, high-density, multidimensional stacking parameter analysis
- Output:

ZO section (2D) or volume (3D) of high S/N ratio

76th SEG Annual Meeting, New Orleans, 2006 Heilmann et al.

Introduction CRS stack

Land-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions

- Alternative to standard NMO/DMO/stack approach
- Principle:
 - Second-order approximation of reflection events
- Output:
 - ZO section (2D) or volume (3D) of high S/N ratio
 - Physically interpretable stacking parameters

76th SEG Annual Meeting, New Orleans, 2006 Heilmann et al.

Introduction CRS stack

Land-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions

- Alternative to standard NMO/DMO/stack approach
- Principle:
 - Second-order approximation of reflection events
- Output:
 - ZO section (2D) or volume (3D) of high S/N ratio
 - Physically interpretable stacking parameters

76th SEG Annual Meeting, New Orleans, 2006 Heilmann et al.

Introduction CRS stack

Land-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions

- Alternative to standard NMO/DMO/stack approach
- Principle:
 - Second-order approximation of reflection events
- Output:
 - ZO section (2D) or volume (3D) of high S/N ratio
 - Physically interpretable stacking parameters

76th SEG Annual Meeting, New Orleans, 2006 Heilmann et al.

Introduction CRS stack

Land-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions

- Alternative to standard NMO/DMO/stack approach
- Principle:
 - Second-order approximation of reflection events
- Output:
 - ZO section (2D) or volume (3D) of high S/N ratio
 - Physically interpretable stacking parameters

76th SEG Annual Meeting, New Orleans, 2006 Heilmann et al.

Introduction CRS stack

Land-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions

- Alternative to standard NMO/DMO/stack approach
- Principle:
 - Second-order approximation of reflection events
- Output:
 - ZO section (2D) or volume (3D) of high S/N ratio
 - Physically interpretable stacking parameters

76th SEG Annual Meeting, New Orleans, 2006 Heilmann et al.

Introduction CRS stack

Land-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions

- Alternative to standard NMO/DMO/stack approach
- Principle:
 - Second-order approximation of reflection events
- Output:
 - ZO section (2D) or volume (3D) of high S/N ratio
 - Physically interpretable stacking parameters

76th SEG Annual Meeting, New Orleans, 2006 Heilmann et al.

Introduction CRS stack

Land-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions

- Alternative to standard NMO/DMO/stack approach
- Principle:
 - Second-order approximation of reflection events
- Output:
 - ZO section (2D) or volume (3D) of high S/N ratio
 - Physically interpretable stacking parameters

76th SEG Annual Meeting, New Orleans, 2006 Heilmann et al.

Introduction CRS stack

Land-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions

- Alternative to standard NMO/DMO/stack approach
- Principle:
 - Second-order approximation of reflection events
- Output:
 - ZO section (2D) or volume (3D) of high S/N ratio
 - Physically interpretable stacking parameters

76th SEG Annual Meeting, New Orleans, 2006 Heilmann et al.

Introduction CRS stack

Land-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions

- Alternative to standard NMO/DMO/stack approach
- Principle:
 - Second-order approximation of reflection events
- Output:
 - ZO section (2D) or volume (3D) of high S/N ratio
 - Physically interpretable stacking parameters

76th SEG Annual Meeting, New Orleans, 2006 Heilmann et al.

Introduction CRS stack

Land-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions

- Alternative to standard NMO/DMO/stack approach
- Principle:
 - Second-order approximation of reflection events
 - Coherence-based, high-density, multidimensional stacking parameter analysis CRS attributes
- Output:
 - ZO section (2D) or volume (3D) of high S/N ratio
 - Physically interpretable stacking parameters

76th SEG Annual Meeting, New Orleans, 2006 Heilmann et al.

Introduction CRS stack

Land-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions

- Alternative to standard NMO/DMO/stack approach
- Principle:
 - Second-order approximation of reflection events
 - Coherence-based, high-density, multidimensional stacking parameter analysis CRS attributes
- Output:
 - ZO section (2D) or volume (3D) of high S/N ratio
 - Physically interpretable stacking parameters

76th SEG Annual Meeting, New Orleans, 2006 Heilmann et al.

Introduction CRS stack

Land-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions

- Alternative to standard NMO/DMO/stack approach
- Principle:
 - Second-order approximation of reflection events
 - Coherence-based, high-density, multidimensional stacking parameter analysis CRS attributes
- Output:
 - ZO section (2D) or volume (3D) of high S/N ratio
 - Physically interpretable stacking parameters

76th SEG Annual Meeting, New Orleans, 2006 Heilmann et al.

Introduction CRS stack

Land-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions

- Alternative to standard NMO/DMO/stack approach
- Principle:
 - Second-order approximation of reflection events
- Output:
 - ZO section (2D) or volume (3D) of high S/N ratio
 - Physically interpretable stacking parameters

76th SEG Annual Meeting, New Orleans, 2006 Heilmann et al.

Introduction CRS stack

Land-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions

Specific problems:

Sparse data

76th SEG Annual Meeting, New Orleans, 2006

Heilmann et al.

Introduction CRS stack

Land-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions

Acknowledgments

▲□▶ ▲□▶ シタ(や

Specific problems:

- Sparse data
- Low signal-to-noise ratio

76th SEG Annual Meeting, New Orleans, 2006 Heilmann et al.

Introduction CRS stack

Land-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions

Acknowledgments

▲□▶ ▲母▼ ろ∢⊙

Specific problems:

- Sparse data
- Low signal-to-noise ratio
- Rough top-surface topography

76th SEG Annual Meeting, New Orleans, 2006

Heilmann et al.

Introduction CRS stack

Land-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions

Specific problems:

- Sparse data
- Low signal-to-noise ratio
- Rough top-surface topography

directly addressed by the CRS stack

76th SEG Annual Meeting, New Orleans, 2006

Heilmann et al.

Introduction CRS stack

Land-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions

Synthetic data example

76th SEG Annual Meeting, New Orleans, 2006 Heilmann et al.

Introduction CRS stack

Land-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions Acknowledaments

< □ > < □ > < □ > < ○ < ○</p>

Synthetic example

76th SEG Annual Meeting, New Orleans, 2006 Heilmann et al.

Introduction CRS stack

Land-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions

CRS operator for smooth topography

Smooth topography description:

$$\begin{aligned} t_{\text{hyp}}^2(m_x,h_x) &= \left(t_0 + \frac{2\sin\beta_0}{v_0\cos\alpha_0} m_x\right)^2 \\ &+ \frac{2t_0}{v_0} \left(\mathcal{K}_{\text{N}} \frac{\cos^2\beta_0}{\cos^2\alpha_0} - \mathcal{K}_0 \frac{\cos\beta_0}{\cos^2\alpha_0}\right) m_x^2 \\ &+ \frac{2t_0}{v_0} \left(\mathcal{K}_{\text{NIP}} \frac{\cos^2\beta_0}{\cos^2\alpha_0} - \mathcal{K}_0 \frac{\cos\beta_0}{\cos^2\alpha_0}\right) h_x^2 \end{aligned}$$

76th SEG Annual Meeting, New Orleans, 2006

Heilmann et al.

Introduction CRS stack

Land-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions

Synthetic data example Initial CRS stack result

Stacked ZO section, traveltimes refer to floating datum

76th SEG Annual Meeting, New Orleans, 2006 Heilmann et al.

Introduction CRS stack

and-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions Acknowledgments

◆□ ▶ ▲□ ▶ ろへで

CRS operator for arbitrary topography

Rough topography description:

$$t_{hyp}^{2}(\vec{m},\vec{h}) = \left(t_{0} - \frac{2}{v_{0}} \left(m_{x} \sin\beta_{0} + m_{z} \cos\beta_{0}\right)\right)^{2} + \frac{2 t_{0} K_{N}}{v_{0}} \left(m_{x} \cos\beta_{0} - m_{z} \sin\beta_{0}\right)^{2} + \frac{2 t_{0} K_{NIP}}{v_{0}} \left(h_{x} \cos\beta_{0} - h_{z} \sin\beta_{0}\right)^{2}$$

76th SEG Annual Meeting, New Orleans, 2006 Heilmann et al.

Introduction CRS stack

Land-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions

Acknowledgments

・ロト ・日 ・ うへで

Synthetic data example Optimized CRS stack result

Stacked ZO section, traveltimes refer to floating datum

76th SEG Annual Meeting, New Orleans, 2006 Heilmann et al.

Introduction CRS stack

and-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions Acknowledaments

▲□▶ ▲□▶ ろへ⊙

Synthetic data example Initial CRS stack result

Stacked ZO section, traveltimes refer to floating datum

76th SEG Annual Meeting, New Orleans, 2006 Heilmann et al.

Introduction CRS stack

and-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions Acknowledaments

▲□▼ ▲□▼ ろく(?)

Synthetic data example Optimized CRS stack result

Stacked ZO section, traveltimes refer to floating datum

76th SEG Annual Meeting, New Orleans, 2006 Heilmann et al.

Introduction CRS stack

and-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions Acknowledaments

▲□▶ ▲□▶ ろへ⊙

Specific problems:

- Sparse data
- Low signal-to-noise ratio
- Rough top-surface topography
 - directly addressed by the CRS stack
- Near-surface velocity variations

76th SEG Annual Meeting, New Orleans, 2006

Heilmann et al.

Introduction CRS stack

Land-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions

Acknowledgments

・ロマ ・日マ うくで

Specific problems:

- Sparse data
- Low signal-to-noise ratio
- Rough top-surface topography

directly addressed by the CRS stack

- Near-surface velocity variations
- Variable thickness of weathering layer

76th SEG Annual Meeting, New Orleans, 2006

Heilmann et al.

Introduction CRS stack

Land-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions

Specific problems:

- Sparse data
- Low signal-to-noise ratio
- Rough top-surface topography

directly addressed by the CRS stack

- Near-surface velocity variations
- Variable thickness of weathering layer
- Complex near-surface geology

76th SEG Annual Meeting, New Orleans, 2006

Heilmann et al.

ntroduction CRS stack

Land-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions

Specific problems:

- Sparse data
- Low signal-to-noise ratio
- Rough top-surface topography

directly addressed by the CRS stack

- Near-surface velocity variations
- Variable thickness of weathering layer
- Complex near-surface geology

CRS-stack-based residual static correction

76th SEG Annual Meeting, New Orleans, 2006

Heilmann et al.

ntroduction CRS stack

Land-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions

Residual static correction

Principle:

 Cross-correlation stacks from stacked pilot traces and move-out corrected prestack traces 76th SEG Annual Meeting, New Orleans, 2006

Heilmann et al.

Introduction CRS stack

Land-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions

Acknowledgments

▲□▶ ▲□▶ めへで
Residual static correction

Principle:

 Cross-correlation stacks from stacked pilot traces and move-out corrected prestack traces

Improvements:

 Cross-correlation stacks generated from move-out corrected CRS-supergathers

76th SEG Annual Meeting, New Orleans, 2006

Heilmann et al.

Introduction CRS stack

Land-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions

Residual static correction

Principle:

 Cross-correlation stacks from stacked pilot traces and move-out corrected prestack traces

Improvements:

- Cross-correlation stacks generated from move-out corrected CRS-supergathers
- High S/N ratio of CRS stacked pilot traces

76th SEG Annual Meeting, New Orleans, 2006

Heilmann et al.

ntroduction CRS stack

Land-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions

Acknowledgments

 $\bullet \Box \models \bullet \Box \models \bullet \circ \circ \circ \circ$

Residual static correction

Principle:

 Cross-correlation stacks from stacked pilot traces and move-out corrected prestack traces

Improvements:

- Cross-correlation stacks generated from move-out corrected CRS-supergathers
- High S/N ratio of CRS stacked pilot traces
- No datum statics needed for move-out correction

76th SEG Annual Meeting, New Orleans, 2006

Heilmann et al.

ntroduction CRS stack

Land-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions

Synthetic data example Optimized CRS stack result after RSC

Stacked ZO section, traveltimes refer to floating datum

76th SEG Annual Meeting, New Orleans, 2006 Heilmann et al.

Introduction CRS stack

and-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions Acknowledaments

・ロト < 日 > うへ(?)

Synthetic data example Optimized CRS stack result before RSC

Stacked ZO section, traveltimes refer to floating datum

76th SEG Annual Meeting, New Orleans, 2006 Heilmann et al.

Introduction CRS stack

and-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions Acknowledaments

▲□▼ ▲□▼ ろく(~

Synthetic data example Optimized CRS stack result after RSC

Stacked ZO section, traveltimes refer to floating datum

76th SEG Annual Meeting, New Orleans, 2006 Heilmann et al.

Introduction CRS stack

and-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions Acknowledaments

・ロト < 日 > うへ(?)

Redatuming of CRS stack results

Results related to floating datum:

Idea: Upward continuation of ZO rays to horiz. datum using known β_0 and constant redatuming velocity v_f

76th SEG Annual Meeting, New Orleans, 2006 Heilmann et al.

Introduction CRS stack

Land-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions

Redatuming of CRS stack results

$$\begin{aligned} \mathbf{v}_f &= \mathbf{v}_0: \quad \mathbf{x}_0' = \mathbf{x}_0 + \Delta z \tan \beta_0 \quad \text{and} \quad t_0' = t_0 + \frac{2\Delta z}{\mathbf{v}_0 \cos \beta_0} \,, \\ \mathcal{K}_{\text{NIP,N}}' &= \left(\frac{1}{\mathcal{K}_{\text{NIP,N}}} + \frac{1}{2}\Delta t \, \mathbf{v}_0\right)^{-1} \text{and} \quad \beta_0' = \beta_0 \,. \end{aligned}$$

76th SEG Annual Meeting, New Orleans, 2006 Heilmann et al.

Heilmann et al.

Introduction CRS stack

and-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions

▲□▶ ▲母▼ ろく⊙

Synthetic data example Optimized CRS stack result after RSC and redatuming

Stacked ZO section,

traveltimes refer to z=1460 m, redatuming velocity: 3.5 km/s

76th SEG Annual Meeting, New Orleans, 2006 Heilmann et al.

Introduction CRS stack

Land-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions Acknowledgments

▲□▶ ▲□▶ 少へ

*image courtesy of Saudi Aramco

76th SEG Annual Meeting, New Orleans, 2006 Heilmann et al.

Introduction CRS stack

and-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions Acknowledgments

▲□▶ ▲□▶ 少々で

Acquisition geometry & recording parameters

	Parameter	Value
Shots and receivers	Number of shots Shot interval Number of receivers Receiver interval	1279 30 m 1279 30 m
Midpoints	Number of CMP bins Maximum CMP fold Offset range	2840 120 –3602 3607 m
Recording parameters	Recording time Sampling interval Frequency content Mean frequency	2 s 4 ms 5 - 65 Hz 30 Hz

76th SEG Annual Meeting, New Orleans, 2006

Heilmann et al.

Introduction CRS stack

and-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions

Acknowledgments

▲□▶ ▲□▶ ろくぐ

Acquisition geometry & recording parameters

	Parameter	Value
Shots and receivers	Number of shots Shot interval	1279 30 m
	Number of receivers Receiver interval	1279 30 m
Midpoints	Number of CMP bins Maximum CMP fold Offset range	2840 120 –3602 3607 m
Recording parameters	Recording time Sampling interval Frequency content Mean frequency	2 s 4 ms 5 - 65 Hz 30 Hz

76th SEG Annual Meeting, New Orleans, 2006

Heilmann et al.

Introduction CRS stack

and-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions

Acknowledgments

▲□▼ ▲□▼ ろ∢で

Preprocessing & Static Correction

*conducted by TEEC

- Bandpass filter*, corner frequencies 5-10-60-80 Hz
- Automatic gain control*, gate 500 ms
- Zerophase spike deconvolution*, operator 80 ms

76th SEG Annual Meeting, New Orleans, 2006 Heilmann et al.

Introduction CRS stack

Land-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions

Preprocessing & Static Correction

*conducted by TEEC

- Bandpass filter*, corner frequencies 5-10-60-80 Hz
- Automatic gain control*, gate 500 ms
- Zerophase spike deconvolution*, operator 80 ms
- Refraction statics* to horizontal datum at 500 m
- Inverse elevation statics to orig. topography using replacement velocity v_{Re} = 3.5 km/s

76th SEG Annual Meeting, New Orleans, 2006

Heilmann et al.

Introduction CRS stack

Land-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions

Acknowledgments

▲□▶ ▲母 ▶ 釣�?

CRS stack result

Stacked ZO section, traveltimes refer to floating datum

76th SEG Annual Meeting, New Orleans, 2006 Heilmann et al.

Introduction CRS stack

_and-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions Acknowledaments

CRS stack result after RSC

Stacked ZO section, traveltimes refer to floating datum

76th SEG Annual Meeting, New Orleans, 2006 Heilmann et al.

Introduction CRS stack

_and-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions Acknowledaments

▲□▼ ▲□▼ ろ∢で

Percentage increase of coherence

CRS stack result before and after RSC

76th SEG Annual Meeting, New Orleans, 2006 Heilmann et al.

Introduction CRS stack

and-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions Acknowledaments

CRS stack result after RSC and redatuming

$\label{eq:stacked_ZO} Stacked ZO \ section, \\ traveltimes \ refer \ to \ z{=}600 \ m, \ redatuming \ velocity: \ 3.5 \ km/s$

76th SEG Annual Meeting, New Orleans, 2006 Heilmann et al.

Introduction CRS stack

_and-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions Acknowledgments

▲□▶ ▲□▶ 少々で

CRS stack result after RSC and redatuming

Emergence angle section [°] after redatuming, unreliable samples masked out grey 76th SEG Annual Meeting, New Orleans, 2006 Heilmann et al.

Introduction CRS stack

Land-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions Acknowledgments

CRS stack result after RSC and redatuming

NIP-wave radius section [km] after redatuming, unreliable samples masked out grey 76th SEG Annual Meeting, New Orleans, 2006 Heilmann et al.

Introduction CRS stack

Land-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions Acknowledgments

▲□▶ ▲□▶ 少々で

Result of tomographic inversion

76th SEG Annual Meeting, New Orleans, 2006 Heilmann et al.

Introduction CRS stack

and-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions Acknowledgments

(🗆 🕨 🔺 🗗 🕨 🔍 🔍

Result of PreSDM from topography

Input: Prestack data after RSC

76th SEG Annual Meeting, New Orleans, 2006 Heilmann et al.

Introduction CRS stack

and-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions Acknowledgments

▲□▶ ▲□▶ 少々で

Some common image gathers

76th SEG Annual Meeting, New Orleans, 2006 Heilmann et al.

Introduction CRS stack

and-data processing. Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions

Some common image gathers

76th SEG Annual Meeting, New Orleans, 2006 Heilmann et al.

Introduction CRS stack

and-data processing. Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions

Result of PostSDM

Input: Stacked ZO section after redatuming

76th SEG Annual Meeting, New Orleans, 2006 Heilmann et al.

Introduction CRS stack

and-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions Acknowledgments

・ロト < 日 > うへ(?)

Result of PreSDM from topography

Input: Prestack data after RSC

76th SEG Annual Meeting, New Orleans, 2006 Heilmann et al.

Introduction CRS stack

and-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions Acknowledgments

▲□▶ ▲□▶ 少々で

Result of PostSDM

Input: Stacked ZO section after redatuming

76th SEG Annual Meeting, New Orleans, 2006 Heilmann et al.

Introduction CRS stack

and-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions Acknowledgments

・ロト < 日 > うへ(?)

Data-driven CRS technology particularly suitable for complex land-data processing:

76th SEG Annual Meeting, New Orleans, 2006 Heilmann et al.

Introduction CRS stack

Land-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions

Acknowledgments

▲□▶ ▲母▼ ろ∢⊙

Data-driven CRS technology particularly suitable for complex land-data processing:

- Accurate traveltime approximation allows for large stacking aperture in offset and midpoint direction
 enhanced S/N ratio and event continuity
 - + more accurate and stable RSC

76th SEG Annual Meeting, New Orleans, 2006 Heilmann et al.

ntroduction CRS stack

Land-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions

Acknowledgments

▲□▶ ▲□▶ 少々⊙

Data-driven CRS technology particularly suitable for complex land-data processing:

- Accurate traveltime approximation allows for large stacking aperture in offset and midpoint direction
- CRS operator considers true S&R elevations; no elevation statics needed for stack and RSC
 - enhanced resolution, more reliable attributes

76th SEG Annual Meeting, New Orleans, 2006 Heilmann et al.

ntroduction CRS stack

and-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions

Acknowledgments

・ロマ ・回マ うへつ

Data-driven CRS technology particularly suitable for complex land-data processing:

- Accurate traveltime approximation allows for large stacking aperture in offset and midpoint direction
- CRS operator considers true S&R elevations; no elevation statics needed for stack and RSC
- Standardized output by redatuming of CRS stack and attribute sections
 - ► seemless transition to further processing steps

76th SEG Annual Meeting, New Orleans, 2006 Heilmann et al.

ntroduction CRS stack

and-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions

Data-driven CRS technology particularly suitable for complex land-data processing:

- Accurate traveltime approximation allows for large stacking aperture in offset and midpoint direction
- CRS operator considers true S&R elevations; no elevation statics needed for stack and RSC
- Standardized output by redatuming of CRS stack and attribute sections
- Topography handling fully integrated into consistent time-to-depth imaging workflow

76th SEG Annual Meeting, New Orleans, 2006 Heilmann et al.

ntroduction CRS stack

Land-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions

Data-driven CRS technology particularly suitable for complex land-data processing:

- Accurate traveltime approximation allows for large stacking aperture in offset and midpoint direction
- CRS operator considers true S&R elevations; no elevation statics needed for stack and RSC
- Standardized output by redatuming of CRS stack and attribute sections
- Topography handling fully integrated into consistent time-to-depth imaging workflow

Thank you for your attention

76th SEG Annual Meeting, New Orleans, 2006 Heilmann et al.

ntroduction CRS stack

Land-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions

Acknowledgments

The authors would like to thank,

- Saudi Aramco and Samuel H. Gray for providing the real & synthetic data
- ... and all the sponsors of the Wave Inversion Technology (WIT) Consortium, Karlsruhe, Germany

76th SEG Annual Meeting, New Orleans, 2006

Heilmann et al.

Introduction CRS stack

Land-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions

Synthetic data example 2

76th SEG Annual Meeting, New Orleans, 2006 Heilmann et al.

ntroduction CRS stack

Land-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions

Acknowledgments

▲□▶ ▲□▶ シペペ

CRS stack result before redatuming

ZO traveltimes referring to floating datum

76th SEG Annual Meeting, New Orleans, 2006 Heilmann et al.

Introduction CRS stack

and-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions

Acknowledgments

▲□▼ ▲□▼ ろ∢で
CRS stack result after redatuming

ZO traveltimes referring to horizontal datum Redatuming velocity: 1.1 km/s 76th SEG Annual Meeting, New Orleans, 2006 Heilmann et al.

Introduction CRS stack

and-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions

Acknowledgments

Topography & near-surface velocity

シック 4 団 ト 4 日 ト

76th SEG Annual Meeting, New Orleans, 2006

Heilmann et al.

Introduction CRS stack

Land-data processing Topography Residual statics Redatuming

Real data example Data set CRS stack Tomography Depth migration

Conclusions

Acknowledgments

▲□▶ ▲□▶ ろくで